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Abstract  Emerging infectious diseases’ hotspots have been identified as multi-host 
and multi-pathogen systems often characterized in tropical ecosystems by an extensive 
wildlife/domestic/human interface. The pathogen communities shared by the wild 
and domestic populations at this interface reflect the historical epidemiological 
interactions between them. In a research framework using recent community 
ecology, evolutionary biology and molecular biology advances, this information can 
be used to identify potential pathways for future pathogen spill-over initiating the 
emergence process. In other words, an understanding of the mechanisms of pathogen 
transmission in a specific ecosystem can provide an interaction network between 
host populations defined by nodes and edges and characterized by the frequency, 
intensity and direction of the interactions with a direct input for targeted disease 
surveillance.

14.1 � Introduction

The incidence of Emerging Infectious Diseases (EIDs) in human and domestic 
species has increased in the last decades (Cleaveland et al. 2001; Taylor et al. 2001; 
Jones et al. 2008; Woolhouse 2008). Zoonoses constitute 60.3% of human EIDs 
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of which 71.8% originate in a wildlife source with intermediate animal hosts 
often necessary (Jones et  al. 2008). Following (Haydon et  al. 2002), we define 
target species as those species receiving the bulk of sanitary surveillance: 
human and domestic species as well as a few wildlife flagship species. The  
sum of these target species represents a tiny fraction of biodiversity. The bias 
induced by this focused surveillance hides the majority of EIDs events in the 
non-target species.

We have little insight about what is happening “in the wild”, where statistically most 
of pathogen evolution and transmission processes are underway. Our knowledge 
about EIDs processes is therefore limited and skewed in favour of a non-random 
sample of those occurring. Describing these processes and their common properties 
could benefit the surveillance and control of EID in target but also in non-target 
species, supporting global objectives of public and animal health and conservation 
as presented in the “One World, One Health” concept (Karesh and Deem 2000; 
Osofsky et al. 2008; Gibbs and Anderson 2009).

The origin of this increase in EIDs is complex. A relation with disturbed ecolo
gical processes is often assumed (Daszak et al. 2001). Massive changes in organism 
distribution and relations induced by global trends, such as increased anthropogenic 
footprint and climate change have triggered new host, pathogen and environment 
interactions. These new ecological interactions are not randomly geographically 
located and regions with a higher risk of emergence can be identified by plotting 
known emergence events on a map.

According to Jones et al. (2008), hotspots of disease emergence are charac-
terised by:

	1.	 high densities in human and animal populations in systems under intensive health 
surveillance

	2.	 the wildlife/livestock/human interface in tropical ecosystems.

Focusing on wildlife-linked EIDs, the integration of these two characteristics 
leads to a description of EIDs events as a two steps process:

	1.	 emergence of the pathogen sensu stricto (defined as the interspecies spill-over 
from a non-target to a target species) (steps 1 and 2 in Childs et al. (2007)

	2.	 amplification of the epidemic phase with higher host availability (provided by 
higher densities).

Recent EIDs can be classified accordingly: Ebola in humans, originating from 
a potential bat reservoir has reached step 1 but not step 2 (Leroy et al. 2005); HPAI 
H5N1 in poultry with a wild bird origin has reached step 1 and 2 (Webster and 
Govorkova 2006); SARS in humans, originating in bats, as reached step 1 but had a 
limited step 2 in 2003 (Wang and Eaton 2007). In tropical and sub-tropical eco-
systems, the degree of wildlife/livestock/human interface and biodiversity are high 
and offer numerous potential events of spill-over. However, low animal and human 
health surveillance decrease the detection probability. In ecosystems with artificially 
high host densities, less inter-species transmission events occur because of the 
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physical and sanitary protection of these systems. Moreover, efficient surveillance 
systems in target species increase the detection probability of the emergence. This 
analysis could explain the global EID patterns observed.

In order to improve the efficiency and reduce the cost of health interventions, 
research should be implemented on step 1 in order to understand, predict and con-
trol emergence processes and to prevent amplification events (step 2) or prepare 
the health sector to control them (Barclay 2008). Step 1 requires focusing on the 
wildlife/livestock/human interface, which necessitates ecological, epidemiolo
gical as well as socio-economical information. This interface is characterised 
by: (a) multi-host systems; (b) managed and unmanaged animal populations 
(“managed” referring to the state of animal population when influenced by voluntary 
human intervention); (c) natural and modified habitats; (d) remote areas, where 
basic commodities are often lacking; (e) unknown socio-economical system in 
marginalised human communities. The lack of baseline information which charac-
terises these interfaces combined with the above particularities requires the 
development of theoretical and technological tools adapted to the study of EIDs in 
their hotspots (Morgan et al. 2006). However, studying EIDs in selected ecosystems 
raises any of the following challenges: (a) looking for a still unknown pathogen; 
(b) arriving after the emergence process, when one does not know if the spill-over 
process still occurs; (c) looking for a pathogen which is not yet in the study site. 
In order to overcome this dilemma, a shift from a pathogen-centred to a process-
centred approach is necessary. The process at stake is the pathogen spill-over in 
multi-hosts system at the wildlife/livestock/human interface.

We define epidemiological interaction (EI) as any ecological interaction resulting 
in the transmission of pathogen between two host populations (Caron et al. 2010). 
This definition of EI is developed in the next sections of this chapter. We then present 
a research framework, process-orientated, using host and/or pathogen data for the 
inference of emergence risk in a given ecosystem. We describe a method to build EI 
network and present, using an example, how this network can be used to identify 
host populations or EI at risk for pathogen emergence.

14.2 � Estimating Transmission Rate for Pathogens  
Shared Between Host Populations

Standard approaches to study pathogen transmission rate in a single host population 
are pathogen-centred (Bordes and Morand 2009). In one host population, prevalence 
and incidence of the pathogen measured by serological or viral detection techniques 
can be used to calculate the transmission rate. Common index of this transmission 
rate are the R0 and b index and the force of infection (McCallum et al. 2001; see 
Real and Biek 2007 for a recent discussion of these parameters for wildlife zoonosis). 
These parameters are defined for a given pathogen in a defined host population. 
The data needed to estimate these parameters are the contact rate between hosts, the 
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transmission probability resulting from these contacts and the infectiveness of 
the pathogen in the target host or the probability that such a contact occurs between 
an infected and a susceptible host (McCallum et  al. 2001). Models of a shared 
pathogen between two host populations have been developed (see Tompkins et al. 
2002 for some examples).

In an experimental situation using a domestic species, these parameters are 
accessible. A posteriori, after an outbreak, these parameters can be estimated if the 
relevant data has been timely collected. This data concerns repeated data collection 
on a pre-determined sample of the animal population and the setting-up of the 
appropriate environment in which the samples will be adequately stored until labo-
ratory testing. Applied to the wildlife/livestock interface, estimating these parameters 
is difficult in free-ranging species (Morgan et al. 2006). Capture of wild species is 
often expensive, implemented in extreme conditions not suitable for sample 
conservation and unrealistic when the activity needs to be repeated in time on the 
same animals. Real and Biek (2007) suggest a possible framework using telemetry 
(radio and satellite) on wild species combined with sampling survey on wild and 
domestic species. However they identify limits such as the underestimation of the 
quantity of contacts if the entire wild population is not marked. Richomme et al. 
(2006) estimated by direct observations the contact rate and exposure between a 
domestic ungulate and a wild mountain ungulate and discuss additional limits of such 
data for the inference of EIs because of the nocturnal behaviour of wild species which 
cannot be apprehended. The necessity to include in the study the respective sensibi
lity of each species to the pathogen requires also an extrapolation from available data 
on closely-related species. The role of modelling has been and will be crucial in the 
estimation of the behaviour of transmission parameters and their interpretation 
(Lloyd-Smith et al. 2009). A model allows playing with variables to estimate outcomes 
impossible to observe in the field. They use the available data to test hypotheses 
which would be too complex or too costly to test in experimental conditions. 
Multi-host models have been developed under the form of meta-population pathogen 
diffusion process in the particular case of multi-host meta-population (Arino et al. 
2005). Recently, transmission models of multi-strains with differential transmission 
pathways (with emphasis on the role of the environment) paved the way for multi-
pathogen models (Roche and Rohani 2010). However, the integration of multi-host 
and multi-pathogen models has yet to be done. This step will be necessary in order 
to encompass the full complexity of the ecology of infectious disease transmission 
at the wildlife/domestic interface.

The application of these different methods to the case of an unknown pathogen 
before its emergence in the ecosystem raises new issues. Here, the objective  
is to identify an unknown emerging pathogen to reach the target population. 
The emergence event sensu stricto that we are trying to detect is the spill-over of 
an unknown pathogen from an unknown source population to a known naive 
population. Which non-target host should be studied? For which pathogen should 
we test it? In this context where no target pathogen is identified, a pathogen-centred 
approach cannot be implemented.
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14.3 � EI Network and Selection of Host and Pathogen 
Community to Predict Pathogen Emergence

The human species, a domestic species (e.g., livestock) or a flagship wild species 
(e.g., mountain gorilla) can be the target species under study. The unknown patho-
gen emerging in a given ecosystem will be transmitted to the target species by an 
unknown non-target species, through direct and/or indirect contacts (Fig. 14.1). 
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Fig. 14.1  (a) Theoretical contact network including wild, domestic and human populations; in the 
remaining figures, the same network when the human population (b), a domestic population (c) or 
a flagship wildlife species (d) is considered as the target species. Depending on the target population 
selected, the contact network potentially leading to the spill-over of a pathogen from non-target 
populations changes. For example, wildlife population 2 does not play a role in (b) and (c) whereas 
it is considered as a potential source of pathogen in case (d). Relevant epidemiological interactions 
in the system change in case (b), (c) and (d)
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The main assumption of the research framework is that the emerging pathogen 
will use contacts between hosts which have already been used by other 
pathogens. The higher the intensity of EI, the higher the probability of the 
emerging pathogen to use it. If the EI network can be built between different 
host populations, prediction on the likelihood of emergence through a particular 
EI can be made.

Network Analysis (NA) developed primarily in the context of social sciences 
is increasingly used in health ecology (Luke and Harris 2007). It has been 
applied to explore relations between cattle movement data (Heath et al. 2008) or 
human populations patterns (Bansal et al. 2007) and disease spread. A network 
is a set of different entities defined by “nodes” linked by “edges”. Nodes and 
edges have several properties (Fig. 14.2). Nodes are host populations, and edges 
represent EIs. Nodes can be linked with characteristics of the host population 

Fig. 14.2  Three-step process to build a EI network and its schematic representation: (a) Six Host 
populations (HP; target – in dark grey- and non-target) are selected in the ecosystem; (b) Characterisation 
of the attributes of the nodes of each HP based on host or pathogen data; (c) Zoom on 2 nodes 
which properties can be decided according to available information (see Box 14.1) and one edge 
characterised by its 2 properties: (1) Intensity represented by the width of the edge; (2) Direction 
represented by an arrow which could uni- or bidirectional
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(ecological or epidemiological) defined by the type of data used to build the network. 
Edges have two properties:

	1.	 intensity, defined by the number of contacts between host populations, or the 
proportion of pathogens shared between the two host populations; this property 
can be graphically represented by the width of the link between 2 nodes

	2.	 directionality, uni- or bidirectional depending on the transmission possibilities 
between the two host populations; an arrow at the extremity of the edge represents 
this property.

If interested in the temporal variation of EIs, different networks can be built or 
different colour for different temporal windows can be used, based on temporal series. 
Once nodes and edges have been characterised given their attributes, the network 
illustrates the principal edges-EIs between the target species and non-target species.

The EI network can be build using two different sources of data: host data or 
pathogen data. The host data consists in estimates of direct and indirect contacts 
between host populations. The pathogen data consists in the community of pathogens 
shared by different host populations. In the former case, the host contacts will be 
used as estimation of future pathogen spill-over and this approach can be called 
a priori. In the later case, pathogen transmissions that have already occurred will 
be used to estimate the potential pathways for future pathogen spill-over and the 
approach is in that case a posteriori.

The first step in the building of the EI network is to select which host and which 
pathogen are included in the study. The non-target host populations represent a range 
of wild and domestic species living in the same environment as the target species, and 
potentially acting as candidate source of pathogen. As it is usually impossible to 
obtain relevant data for all wild species in an area for practical and financial reasons, 
the selection of potential hosts can be prioritised, using available information:

	1.	 Phylogenetic proximity (e.g. apes most closely related to human or wild bovid 
species most related to livestock species) is a known criteria to increase the chance 
of pathogen spill-over between two host species (Davies and Pedersen 2008).

	2.	 Ecological knowledge on host species present in the study site.
	3.	 Epidemiological information can orientate as well the selection process.

For example, bats species represent 25% of all mammal species despite being 
under-studied from an ecological point of view. They can be in contact for 
behavioural reasons – feeding, roosting – with different host species. They have 
also been involved in recent human EIDs epidemiology, notably in haemorrhagic 
fever events (Wang and Eaton 2007). If the target species is the human species, 
including bats in the study seems relevant if they occur in the ecosystem. Usually, 
as most studies focus on a specific or a group of pathogens, the selection of host 
populations is based on the available knowledge on the pathogen’s host range. Caron 
et al. (unpublished) have presented a framework for this selection process based on 
epidemiological functional groups of hosts. This framework offers a systematic step 
by step process to consider and select all potential hosts in a given ecosystem. In this 
selection process, available data about host contact (e.g., questionnaire-based) or 
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pathogen prevalence (available through national studies) should be used to fine-tune 
the choice of host populations for the network.

14.4 � Estimating Epidemiological Interactions  
Using Host Data (A Priori Approach)

Estimates of contacts between the target population and one or more non-target 
populations can be used to build the EI network. Host movements and contacts can 
be monitored using different field techniques adapted to the level of study: individual, 
population or community.

Few empirical studies have considered contacts at the wildlife/livestock interface. 
At the individual host level, direct observation or telemetry can detect and quantify 
these contacts. For example, the development of satellite telemetry and the increase 
capacity of miniature batteries allow the study of animal movements with a large 
range of body sizes: up to a few grams for birds (Gaidet et al. 2008) at a very fine 
time-scale (up to a point every 5 mn) for long periods (a year or more). Recent 
examples combining telemetry and density or visual observation techniques have 
successfully determined contact rate of individuals at the wildlife/livestock interface 
(Legendre et al. 1994; Bohm et al. 2009). The main weakness of these studies is the 
underestimation of contacts as it can never be assumed that the entire non-target 
population has been identified. This weakness can be partially controlled by objective 
or subjective knowledge of the study site but can never be completely addressed.

At the population or community level, estimates of overlaps in habitat used by 
different host populations or species (Ezenwa 2003; Poulin 2007a) can be utilised 
as a proxy of interspecies contacts at different seasons. Data collected during 
road-counts or counts focusing on key resources or habitat (such as waterholes) on 
both sides of the interface, as well as trapping data (Caley and Hone 2004) provide 
a quantitative estimate of interspecies interactions which can be used to build an EI 
network. A recent study attempted to estimate EIs in avian communities using bird 
count data in wild and domestic sites to predict the risk of Avian Influenza transmis-
sion at the wildlife/domestic interface (Caron et al. 2010). Finally, local community 
questionnaire-based studies can also produce contact rate between host populations, 
paying particular attention in the design of the questionnaire and treating the infor-
mation as perceptions and not facts (Brook et al. 2009).

The field of molecular epidemiology has experienced recent and major develop-
ments (Gupta et al. 2009). The amount of genetic data on host and pathogen species 
is produced at an exponential rate (Holmes 2007). Recent years have seen the 
development of powerful molecular tools to characterize specific pathogens and 
hosts. This host information supports the characterisation of the genetic distance 
between and among host species or populations (Nieberding and Olivieri 2007). 
Host population dynamics estimated by gene flow will be a particular case of 
population-level study to estimate contacts (see in this book Chevillon et al. 2011; 
Chapitre de ce livre 2011). Molecular tools in this field have been developed and 
can give indications as fine as the parental relationship between individuals. This 
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genetic data can provide fine information to build an EI network between popula-
tions of the same species, giving information on the intensity (or width) of edges 
as well as the direction of edges.

Most of host contact studies to estimate probabilities of pathogen transmission 
have been developed in the context of a specific pathogen. Our objective is to use 
the same tools to qualify and/or quantify EI with no a priori on the pathogen under 
study. As presented in Fig. 14.2, after the first step of host selection, each node, 
representing a host population or species will be attributed characteristics: species 
and/or population information; and the number of host of the network in contact with 
the focal species/population (through habitat, resource overlap or direct contact). 
Edge intensity will be proportional to the estimation of the contact between the two 
hosts. Edge direction is usually not indicated except in particular circumstances. 
For example, species A only transiting in a particular habitat will not be infected in 
this habitat while species B feeding in this habitat could be infected through envi-
ronmental contamination. Finally, successive EI networks can be built in order to 
account for temporal variability of contacts (e.g., seasons). The EI network will 
have to be interpreted with the same limits as the initial contact data: e.g., contacts 
between populations will be under-estimated.

14.5 � Estimating Epidemiological Interactions Using  
the Pathogen Level (A Posteriori Approach)

In the previous paragraph, we presented how host movement and contact data can 
be used to build an EI network. In the following paragraph, we will show how 
epidemiological data can also be used to build EI networks using an a posteriori, 
allowing the most likely pathways for the future emergence of new pathogens.

For each pathogen infecting more than one host population, we can estimate EIs; 
accumulating data on an array of different pathogens will strengthen the network. 
In other words, gathering epidemiological data on numerous pathogens in an eco-
system in different wild and domestic populations can structure the EI network between 
these populations and predict to a certain extent (discussed below) the behaviour of 
an outsider pathogen. The type of data referred to here as already been collected in 
various studies, albeit not used for this purpose. Jolles et al. (2008) collected data on 
micro- and macroparasite species in buffaloes in South Africa to investigate potential 
ecological interactions (competition, synergies) between pathogens in a single 
host. In another study, Ezenwa 2003 looked at macroparasite richness in sympatric 
wild and domestic ungulates, and analysed their variations according to habitat 
overlap between host species. Other studies dealing with the health status of some 
endangered species, a parameter increasingly investigated in species conservation, 
can also produce relevant information on free-ranging species (Philippa et al. 2008).

Parasite community ecology is a subset of community ecology focusing on 
the distribution of parasites between host populations. Large datasets of parasites 
(mostly macroparasites) in multi-hosts systems have been collected in the course of 
these studies (see Poulin 2007b). Several indices have been used to compare parasite 



320 A. Caron et al.

communities between host populations (Poulin 2003, 2010). The Jaccard index 
(Jaccard 1912) uses presence-absence data of parasites in different host populations 
to give an indicator of the similarity of this community. Other indices, more sophisti-
cated, use prevalence data to compare parasite community (Boyle et al. 1990; Poulin 
2007b). In the context of host populations from the same ecosystem, the geographic 
distance between the host populations is controlled (geographic distances usually 
looked at in parasite community ecology are of the order of hundreds or thousands 
of kilometres). If the phylogenetic distance between host populations can be 
controlled, the similarities measured can estimate the EI between these host popu-
lations. These indices can therefore be used to build EI network as the value of 
the index between two parasite communities shared by two host populations (their 
similarity). Analytical tools to control for phylogentic distances between hosts are 
already used and new ones are under development that incorporate sophisticated 
statistical analyses (Adams 2008; Hadfield and Nakagawa 2010).

History of contacts between host populations is another variable to be considered 
(see Sect. 14.6). The type of the epidemiological data that one can gather varies 
depending on the pathogens targeted and the investment of the scientific and private 
community into the development of specialised diagnostic tools. Presence-absence 
data are the simplest data that one can gather on pathogen epidemiology in a singu-
lar host, and is often the only available information from the literature. Prevalence 
data (direct through pathogen detection or indirect through antibody detection) pro-
vides the percentage of hosts in each population which have been or are in contact 
with the pathogens. As mention above, this type of data can be included in the cal-
culation of similarity indices borrowed from community ecology (Boyle et al. 1990; 
Poulin 2007b).

As presented in the previous section, the molecular epidemiology revolution has 
changed the field of parasite ecology and new genetic information is providing the 
ground for major advances in pathogen research, evolutionary ecology and popula-
tion dynamics of pathogens. The characterisation of HIV strains from different 
human and great apes populations or even from different human individuals has 
brought important development on our knowledge about the origin and the spread 
of this pathogen across the world (Heeney et al. 2006; Cohen 2007; Gilbert et al. 
2007). Another example is the abundant recent literature on phylogenetic analyses 
of HPAI H5N1 strains across the globe linking animal and human outbreaks 
(see Wang et  al. 2008; Cattoli et  al. 2009). Other important pathogens have 
benefited from these technological advances (for some examples on multi-host 
utilisation see Bastos et al. 2003; Vosloo et al. 2006; Foster et al. 2009). The level 
of accuracy to detect single nucleotide change in parasite genomes of these 
molecular tools is increasing and their use at the ecosystem level can pick-up recent 
transmission events including their direction. Biek et al. 2006 have used the Feline 
Immunodefficiency virus (FIV) to track the population dynamics of one of its host 
(Puma concolor). Johnson et al. (2010) highlight this point with another angle and 
suggest to compare the outcomes of an EIDs outbreak with “closely related patho-
gens in different but related host species (…)”. The evolution of parasites is often 
faster than the evolution of their hosts (Nieberding and Olivieri 2007). Recent host 
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population dynamics not detected in the host genetic material can be captured by the 
faster genetic evolution of its parasites. Applied to our context, a phylogenetic tree of 
the same parasites detected in different host populations in the same ecosystem can 
reveal connexions between these host populations and give an estimate of the EIs 
between these host populations for this specific pathogen. The molecular tools can be 
used to characterise EIs. It is likely that in the coming years additional genetic data on 
parasites and new analytical methods will provide more power in the estimation of 
EIs between host populations. Transmission pathways between host populations 
and EI network will be strengthened by these advances (Chevillon et al. 2011).

Replicating the multi-step process developed in Fig. 14.2 and in the previous 
section, once the host selection has been implemented in the ecosystem, each node 
representing a host population can be characterised by the total number of parasite 
species harboured (nodes property represented by its size) and other attributes 
(e.g. in Box 14.1). To estimate the intensity of the edge (its width), we use the value 
of the index calculating the proportion of the parasites shared between two host 
populations/species. In very rare occasions where knowledge about the epidemiology 
of some parasites exists, the direction of the EI could be known: e.g., when a species 
known to be susceptible but not capable of maintaining a parasite is infected by a 
known reservoir of the parasite. Molecular data can potentially inform EIs on 
both their properties: intensity, as molecular data can be used as prevalence data 
(e.g. prevalence for different strains of parasites); direction, the evolution of a parasite 
strain between two host populations can be tracked back and the donor population 
can be distinguished from the receptor population. Finally, if time series data is 
available different network can estimate the variation of EIs across seasons (time 
series used to infer transmission dynamics between hosts see Begon et al. 1999).

So far, the use of these epidemiological and molecular tools has been limited to one 
target pathogen and only a few articles have referred to the extension of their use to 
several pathogens, to host population dynamics, or to contacts between hosts (Poss 
et  al. 2002). At an ecosystem level, it is the combined use of presence-absence, 
prevalence and molecular data on multiple pathogens which will define EI networks. 
The integration of different type of data for different parasite species will be a chal-
lenge in the framework of this approach. Prevalence data will give more fine-scale 
details about the shared community of pathogens than presence/absence data as for 
each host population, the estimated percentage of individuals in the population infected 
by the parasite will be taken into account in the index. Molecular data can give even 
more details about how long ago the parasite strain was transmitted from one host to 
the other. To our knowledge, the only possibility to integrate this data in one network 
is to weight each type of data (e.g., giving more weight to molecular, then prevalence 
and finally presence/absence data). The more data gathered on various pathogens, 
the more detailed the hypotheses on future EIDs epidemiological pathways.

For example, de Garine-Wichatitsky et al. (2010) have recently detected the first 
case of bovine tuberculosis (bTB) in African buffaloes in a Zimbabwean national 
park and discussed the outcomes of this emergence at the country level. How will the 
pathogen behave in this ecosystem? Will it spill-over to communal cattle populations? 
To other wildlife species? To human populations? Data on circulating diseases 
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(zoonoses and others) in this area (e.g. foot-and-mouth disease, brucellosis, rift valley 
fever etc.) can bring information on the structure of the EI network. The network 
and other epidemiological knowledge about parasites can be used to prioritize 
the nodes or edges at risk. One can consider interventions on the nodes (host) of the 
network for surveillance and/or control but also on the edges (EIs) to “break” 
the transmission pathways and limit the potential for emergence. If not detailed here, 
the relation between an EI network and a spatially explicit approach can be done.

Table 14.1  Host and parasite species used
Target sp. Homo sapiens

Rodent sp. Bandicota indicata (Bi), Bandicota savilei (Bs), Verylmys bowersi 
(Bb), Leopoldamys edwardsi (Le), Maxomys surifer (Ms), Mus 
caroli (Mc), Niviventer fulvescens (Nf), Rattus andamanensis 
(Ran), Rattus argentiventer (Rar), Rattus exulans (Re), Rattus 
losea (Rl), Rattus norvegicus (Rn), Rattus tanezumi (Rta), 
Rattus tiomanicus (Rti)

Macroparasite sp. Hymenolepis nana, Rodentolepis sp., Taenia sp., Taenia 
taeniaeformis, Ascaris sp., Gnathostoma malaysiae, 
Ganguleterakis spumosa, Citellina levini, Syphacia muris, 
Physaloptera sp., Rictularia sp., Rictularia tani, 
Gongylonema neoplasticum, Mastophorus muris, 
Protospiura-Mastophorus sp., Cyclodontostomum purvisi, 
Strongyloides ratti, Strongyloides sp., Nippostrongylus 
brasillensis, Nippostrongylus sp., Orientostrongylus tenorai, 
Echinostoma ilocanum, Echinostoma malayanum, 
Notocotylus sp., Quinqueseralis quinqueseralis, 
Gastrodiscoides hominis, Centrocestus sp.

Microparasite sp. Leptospira spp, Ornentia spp, Bartonella spp, hantavirus, herpes 
virus, LCM virus, Trypanosoma spp, rabies virus.

Box 14.1  Epidemiological Interaction Network for 14 Rodent Species and 
the Human Species

In this example, the human species is our target species and we explore the EIs 
between the human species and several rodent species present in particular 
ecosystems of Southeast Asia represented by different habitats (dry and 
irrigated agricultural areas, forests, and villages).
From the literature (Chaisiri et al. 2010) (Herbreteau et al. unpublished), we 
obtained presence-absence data on 14 rodent species. Information about 34 
macroparasite species and 8 microparasite species were collected for these 14 
rodent species and susceptibility to these parasites for the human species were 
obtained (Table 14.1). A 42 parasites*15 hosts matrix was built (and filled 
with “1” or “0” for occurrence of infection and absence respectively in each 
host species. This matrix was used to calculate the Jaccard Index (=number of 
parasite species present in both host populations/sum of parasite species present 
in each host populations) displayed in Table 14.2. The Jaccard index value 

(continued)
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varies therefore between “0” for no parasite species shared and “1” for all 
parasite species shared.

We used the Jaccard index as a proxy of the epidemiological interactions 
(EIs) between each host population and built the corresponding EI network 
(Fig. 14.3).

The analysis of this network leads to the following observations:

– � Interpreting the size of the nodes, the three rodent species with the highest 
parasite diversity are occurring in human settlements. The three rodent spe-
cies with the lowest parasite diversity occur in primary or secondary forests 
and dry agricultural land.

Fig. 14.3  Epidemiological Interaction Network for 14 rodent species and the human species 
in the Southeast Asian ecosystems based on presence-absence data for 34 macroparasite 
species and 8 microparasite species. Each node represents a host species, the size of the 
node is proportional to the number of parasite species harboured by the host and the greyed 
level of the circle represents the habitat in which the host species is mostly found (except 
for human): from pale grey for primary forest, rice fields, modified forest, dry agricultural 
areas to black for human settlements. Each edge between two nodes represents the shared 
parasite community and its width is proportional to the Jaccard index. We placed the human 
species in the centre of the figure and its edges in black for visual comfort

Box 14.1  (continued)

(continued)
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– � The size of the human species node indicates that we share 15 parasite 
species with rodent species studied here.

– � Interpreting the width of the edges at the network level, there is a higher den-
sity of large-width edges on the left of the network, indicating that rodent 
species in human settlements and rice-fields share a higher proportion of 
their parasite diversity than rodent species in the remaining habitats.

– � Interpreting the width of the edges concerning the human species, Bi and 
Bs have the highest Jaccard index values (0.48 and 0.5 respectively), fol-
lowed by Re, Rta and Rn (0.43, 0.42, 0.41 respectively).

– � The nodes of Bi, Ran, Rn and Rta have the maximum number of edges 
(n = 14) possible in this network. They all occur in human settlements, rice 
fields except for Ran occurring in primary forest. The nodes of Bb, Le and 
Mc have the lowest number of edges in the network (n = 9) and they all 
belong to primary and secondary forest or dry agricultural areas.

– � The node of the human species has 13 edges close to the maximum of 14.

The method of calculus of the index needs to be kept in mind: the observa-
tion that Bi and Bs share more parasites with the human species than Rta and 
Rn is wrong. The human species shares more parasite species with Rn and Rta 
than with Bi and Bs (11, 14, 10, 8 respectively). The difference is due to the high 
parasite species richness of Rn and Rta. Other indices can be used to address 
this kind of issue but no index is perfect. The highest intensities of EI are 
found in rodent species present in heavily disturbed habitat (human settlement 
and rice fields) and the highest intensities of EI linking the human species 
with rodent species are also found with rodent species living in these same 
habitats. This observation suggests that humans are more at risk of contracting 
new pathogens from rodents present in the human settlement compared to 
rodents present in primary forest. The availability and patchiness of resources 
in human modified environment could explain the higher EI intensity in rodent 
species living in these environments.

This first network can orientate surveillance protocols towards the most 
interesting host species to be included in order to answer the question at stake: 
if the question is the probability of EID from rodent host in this ecosystem, 
the surveillance protocol will target species living in the human settlements 
(and a ranking can be done on this species) and in the rice fields with maybe 
Rti being an interesting sentinel species to look at as a bridge species between 
pristine and modified environment. To our knowledge, this species is never 
mentioned as a potential source of infectious disease or as a sentinel in the 
literature. If one is more interested in the potential emergence of pathogens in 
rodent species, Ran which shares parasite species with all the other rodent 
species and humans and lives mostly in primary forests should be considered 
as a potential source.

Box 14.1  (continued)
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14.6 � Discussion

The discussion will mainly address the pathogen approach as the host approach is at 
advance stage of development in the literature.

From an epidemiological perspective, usually investigating one epidemiological 
cycle at a time, the EI network approach that we present makes no sense. The epide-
miology of each disease is different and one cannot draw inferences on a pathogen 
using data from another. However, from an ecological perspective, the line of 
thoughts is logical even if challenging. There is not an infinite opportunities for a 
pathogen to be transmitted between two host populations and new pathogens will 
use routes already used by other pathogens with a higher probability. Identifying 
common pathways between host populations will therefore increase the knowledge 
about future probable emergence pathways in this system. This pathogen approach 
does not refer to a specific pathogen and focuses on the hosts’ direct and indirect 
contacts but only the ones resulting in pathogen transmission. The utility of such an 
approach is obvious in the surveillance of EIDs in a hotspot: with an EI network, 
one can assess the probability of future spill-over processes between specific 
populations and target surveillance and/or control. In a limited-resource environment 
(true everywhere but even more in most EID hotspots), EI networks will point at 
most probable transmission pathways between host populations which can be acted 
upon to reduce the probability of transmission/emergence.

Box 14.1 gives an example of an EI network built using presence-absence data 
of macro- and micro- parasites in 14 rodent species and the human species. The data 
has been gathered from the literature (see Chaisiri et  al. 2010). Using a simple 
method to describe the parasite communities shared by each pair of host populations, 
the EI network illustrates the intensity of each edge proportional to its width, the 
parasite species richness per host and the main habitat where each host occurs. 
Eco-epidemiological information such as which rodent host shares a high proportion 
of its parasite species with humans are visually explicit and new hypotheses about 
key-rodent species are presented. These observations suggest that the EI network is 
representative of the level of contacts between the human species and the rodent 
species. Finally, combining this (crude) epidemiological and ecological information 
in a single analysis provide more information about the system than a simple juxta-
position of single parasite information.

In several practical situations, scientists and managers will be concerned by 
the possible emergence of a specific pathogen in a given ecosystem and for a 
specific target species. In that case, they should target closely related pathogens 
or some with similar behaviour (transmission pathways, host range) in order to 
delineate a more specific EI network. This step can be done by creating a sub-network 
with the selected pathogens or by weighting the influence of some pathogens in the 
network. Other a priori conditions could be a research question targeting a type 
of emerging pathogen to look for (e.g., haemorrhagic fevers). For example, 
several authors have argued that future EIDs will concern in majority RNA 
virus-type pathogens, due to inherent viral characteristics such as high mutation rate 
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(Poss et al. 2002; Holmes and Rambaut 2004; Cleaveland et al. 2007). The design 
of a research framework focusing on emerging RNA viruses will select pathogens 
with similar mode of transmission (other RNA viruses for example) which should 
use the same EIs. This could be done by focusing the EI network with information 
from parasites phylogenetically related to the potentially emerging parasite of interest 
(e.g., separating viruses, bacteria, macroparasites, etc.) and/or sharing the same 
mode(s) of transmission. The later seems to bear more power than the former, 
but this will need to be tested. This approach is process orientated and the modes of 
transmission of parasite will be crucial in determining the transmission pathways 
between host populations. Groups of parasite with direct, environmental or vector-
born transmission could a priori produce different EI networks. Three outcomes 
could emerge from empirical data:

	1.	 each EI network is specific for each parasite species and the EI network approach 
is somehow useless

	2.	 they are functional groups of parasite sharing a similar EI network (e.g., based on 
their modes of transmission)

	3.	 EI network are general and produce a transmission framework for all parasite 
species given that the network is fed with data from enough parasite species.

In the case study of Box 14.1, sub-network could be explored comparing macro- 
and microparasites EI network or regrouping parasite by modes of transmission and 
comparing the corresponding sub-network.

Another argument in favour of the inclusion of all types of parasites in the building 
of EI network using the a posteriori approach is that there is no independence 
between the parasite data from various hosts (Jolles et al. 2006). Each parasite 
species is in struggle with the host immunity system and in ecological interaction 
(direct e.g., competition, synergy or indirect through the host immune system) with 
the other parasites. The community of parasites in the ecosystem will have its own 
ecological interactions defined by host and parasite presence and densities (Atmar 
and Patterson 1993; Booth and Dunne 2004). Despite some interesting recent results 
(Graham 2008; Jolles et  al. 2008), co-infections of parasites in host populations 
have not been much explored. The patterns of co- occurrence or exclusion between 
parasites in hosts are de facto included in EI networks and will not create issues for 
their interpretation. Developing EI network will provide more information on 
parasite interaction in hosts.

Host populations in the same ecosystem for long periods of time should share 
more parasites than host populations which have recently come into contact. 
Here, “recently” refers to a period of time during which host populations did not 
have time to exchange most of their parasite species. Evolutionary processes 
should be close to equilibrium in co-evolved host-pathogen interaction (e.g. for 
Low Pathogenic Influenza viruses and waterfowl, Webster et al. 1992) and the EI 
network identified quite robust. As time since hosts have been in contact increases, 
potential transmission events with low probability will statistically increase. In the 
EID hotspots considered, the time since first contact between a target and a non-target 
population should be small: human and great apes due to hunting or tourism; livestock 
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and wild ungulates in pristine areas recently colonised; intensive poultry production 
units recently installed in proximity of wetlands used by wild birds. In EIDs 
hotspots, by definition, (human-induced) changes disturb ecological interactions in 
communities. In this context, the EI identified could be instable (Altizer et al. 2003; 
Thomson 2005) and prone to change leading to an evolving EI network. In this 
context, the a priori approach, using host movements and contacts could be used. 
The a posteriori approach will be more difficult to implement in extremely recent 
interface. However, a few years should be enough for the shared community of 
parasites to reach a relative equilibrium.

More information could be added in the EI network presented in Box 14.1. 
First, some of the parasites used, mainly microparasites such as Leptospira or 
Hantaviruses, have benefited from molecular tools able to track minute changes in 
their genetic load. As mentioned already microparasites are fast evolving organisms 
compared to their hosts (Poss et al. 2002; Holmes and Rambaut 2004). This can be 
useful in tracking the origin of infection between different populations, capturing 
the history of spill-over process at a fine scale. A phylogenetic tree of the parasites 
strains detected in different host populations could bring information on the direc-
tionality of some EI and indicates rodent species as source or reservoir for the rest 
of host community (for an example see Cottam et al. 2008). Secondly, data from the 
host population, as presented previously, such as home range or telemetry data could 
be included to incorporate potential direct and indirect contact between host popu-
lations and related to EI identified in the pathogen approach. This would combine 
the host and pathogen approaches.

14.7 � Conclusion

After presenting how the use of host data can shed light on transmission pathways 
between host populations, we developed a multi-pathogen approach, process-centred, 
to infer epidemiological interaction at the wildlife/livestock/human interface. 
Theoretical and technical tools for this approach have already been developed but 
they are used with a different angle here. Epidemiological data on various pathogens 
are integrated in a network to predict the behaviour of EIDs, in particular before the 
emergence event. The need for this approach comes from an empirical point of 
view, from experiences in areas of limited resources (financial and available data) 
and tries to answer practical questions of surveillance and control of EIDs where 
we know that they have a high probability to happen (EID hot spots). The scale of 
study – the community level – is extremely complex but we suggest that we could 
benefit from this scale in a resource limited environment.

Albeit empirical, this approach links with the modelling approach by concen-
trating on processes of transmission. The data produced should feed some models 
(e.g. Arino and van den Driessche 2006) and maybe push the building of models 
towards including multi-pathogen data to construct EI networks. Network-based 
modelling can be an entry point (Legendre et al. 1994) with the potential to include 
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social data, facilitating the inclusion of human/animal transmission processes 
(Legendre et al. 1994; Van Kerkhove et al. 2009).

The context of EIDs in developing countries is an environment where usually 
little epidemiological data is available except for key diseases, important for 
government services: if existing data on a pathogen brings light on contacts between 
two host species, this builds a starting point for the EI network. The gathering of 
ecological and epidemiological information available for the ecosystem under study, 
obtained from different sources (e.g., literature, veterinary services, conservation 
NGOs) can be included in a preliminary EI network which could identify the first 
surveillance priorities to protect the target species following for example a risk 
analysis process. The inclusion of the epidemiology of several pathogens in the 
analysis should explore the results of shared prevalence or strains in relation to 
the specific modes of transmission. If molecular data exists for a pathogen, the com-
parison of this data across host populations can say a lot about the history of 
contacts between these hosts and about the intensity and the frequency of contacts 
(Real et al. 2005; Biek et al. 2006).

From a more practical point of view, one could argue that such an approach would 
be too costly to be funded mainly due to the multiplicity of diagnostic tests which 
can peak quickly when gene sequencing is needed. The cost of sampling wildlife 
species in remote areas is high. Specialised team working on particular diseases will 
be more than willing to collaborate and contribute in terms of laboratory cost in order 
to access such rare samples. This requires prior communication and agreement with 
interested teams and logistical arrangements for the right samples to be collected 
and delivered to laboratories. The accumulation of such collaborations will increase 
the multi-pathogen data and strengthen the EI network. Multidisciplinarity inter- and 
intra- research team is a prerequisite for this approach.
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